- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Du, Zhe (1)
-
Liu, Zexiang (1)
-
Ozay, Necmiye (1)
-
Weitz, Jack (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
AutoRegressive eXogenous (ARX) models form one of the most important model classes in control theory, econometrics, and statistics, but they are yet to be understood in terms of their finite sample identification analysis. The technical challenges come from the strong statistical dependency not only between data samples at different time instances but also between elements within each individual sample. In this work, for ARX models with potentially unknown orders, we study how ordinary least squares (OLS) estimator performs in terms of identifying model parameters from data collected from either a single length-T trajectory or N i.i.d. trajectories. Our main results show that as long as the orders of the model are chosen optimistically, i.e., we are learning an over-parameterized model compared to the ground truth ARX, the OLS will converge with the optimal rate O(1/√T) (or O(1/√N)) to the true (low-order) ARX parameters. This occurs without the aid of any regularization, thus is referred to as self-regularization. Our results imply that the oracle knowledge of the true orders and usage of regularizers are not necessary in learning ARX models — over-parameterization is all you needmore » « less
An official website of the United States government

Full Text Available